Showing posts with label brain development. Show all posts
Showing posts with label brain development. Show all posts

Saturday, June 27, 2015

How does the brain work?

We have no idea. We are still in the very beginning stages of understanding most of the basics. From a researcher's perspective, it's a very exciting time to be a scientist, because you get to rummage around on the ground floor. But from an overall perspective, most of it is spooky.  

Let me give you some examples of how little we know about how the brain works. We know that you use the left-side of your brain for speech. Under normal circumstances, if you get a stroke on the left side of your brain, your speech can be greatly affected. Depending upon where you got the stroke, it could affect your ability to speak language or your ability to understand language.

There is a little six year old who suffered from something Sturge-Weber syndrome, a catastrophic brain disease. Because he had this disorder, the little guy had to have his entire left hemisphere removed. No left hemisphere, no language. That should have completely destroyed his language ability. Right?

Wrong!

Within two years, the little guy had regained his language abilities entirely. The right side of his brain seemed to have noticed there was a deficit and simply rewired itself to take over talking. Do we understand this?

We do not.

We do not understand how you learn a language of any kind. We don't know how you know how to walk. We don't know how you know how to read. You have a complete map of your body in your head. Actually, you have several maps of your body in your head. Some of them tell you where you are, some of them tell you how to move. One even tells you how to see. We don't know how they coordinate their information. We don't know how it knows its you - and what, if anything, YOU are. Consciousness remains a slippery fish as ever.

So you ask me how the brain works. I am happy to repeat my answer. We have no idea.

Visit brainrules.net to learn about the 12 things we know about how the brain works. These are the Brain Rules

.

Friday, December 12, 2014

The Neuroscience of Why Children Play

All children, if given the chance, will play, preferably with other children. The games they play
are often creative, rough and tumble, and of course―fun. Some consequences are obvious:

·         Fun is a positively reinforcing emotion. It makes kids happy.
·         Play encourages exploration with fewer constraining boundaries than the drone of regular life.
·         Play is an effective way to socialize and make friends.
·         Play stimulates initiative and engagement, rather than passively observing what others do.

But there is another less obvious reason, one that is biological. In a review in the American Journal of Play (yes, there really is a scholarly journal on play), evidence is provided from controlled studies in rats and some primates. These studies show that when young animals are encouraged to play they develop improved social competence, cognition, and emotional regulation later in life. Play experience also makes them more adaptable to unexpected situations.

It is true that play is not a developmental feature in all species. The capacity (and need) for play is most evident in higher mammals with developed neocortex and that live in complex social environments. Play fighting is adaptive in predator species, like bears and lions that depend on aggression for survival as adults. In all species that exhibit juvenile play, play is a developmental tool that promotes the neocortical executive control regions to control other neural systems.

Play fighting is especially interesting because the juveniles must construct and obey certain rules. They intuitively recognize that they must not bite too hard, for example, and must give the opponent at chance to win sometimes or at least hold their own in the contest. The juveniles are clearly learning self-control, which will serve them well as adult. This reminds me of the touch football games that kids play.

Species that most obviously exhibit juvenile play are humans, dogs, cats, and ravens. In species where adults play, play can have immediate functions such as defusing social tensions and dominance relationships. Rats are an interesting case. They engage in juvenile play much more than other rodent species. Adult rats seem to exhibit novel mental capabilities, especially those involving social interactions that are not so prominent in other rodents.

When members of a play-oriented species are denied access to juvenile play, they can become dysfunctional adults. For example, rats raised in social isolation show physical and chemical deficiencies in their brains and they have behavioral abnormalities linked to impaired executive control function. They show excessive anxiety to stressful or fear-inducing situations. They over-react to benign social interactions. They are less able to coordinate movements with a partner, both in sexual and non-sexual contexts. They are less able to solve mental tasks. Similar problem are seen in monkeys deprived of juvenile play. Being raised by a surrogate mother is emotionally and intellectually devastating, but less so if the surrogate is robot-like and can interact in play-like behavior with the infant.

Juvenile play sculpts the brain to be more adaptable later in life. In modern human society, juvenile play is often obstructed by such externals as over-scheduling, too much adult supervision, and too many restrictions. The restrictions are often for reasons of safety, which is understandable in today's world. When I was a child, we had a lot more freedom to play, and in safety. It was not unusual in the summer time for a kid to leave home after breakfast and not return until supper, going alone to a park or neighbor kid's house to play unsupervised as we wished. Sadly, that is too much freedom these days. In this respect, the "good old days" really were the "good old days."

Source:

Pellis, S. M., Pellis, V. C., and Himmler, B. T. (2014). How play makes for a more adaptable brain. Ame. J. Play. 7 (1) 73-98


"Memory Medic's new book has just been released: "Improve Your Memory for a Healthy Brain." Smashwords.com